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Sensitive dependence and entropy for quantum systems 
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Received 11 March 1991, in final form 14 May 1991 

Abstract. An attempt is made to carry to quantum mechanics the notion of sensitive 
dependence to initial conditions. A few simple examples and propenier are described. For 
the entropy of quantum evolution a quantity is proposed, in the spirit of the Brin-Katok 
definition, which characterizes orbit complexity rather than the state reduction nature of 
the quantum measurement process. 

1. Introduction 

I have no doubt that quantum effects may cause qualitative changes in the behaviour 
of classically chaotic systems, as they also do  for the non-chaotic systems. However, 
I think that some of the discussions and statements, that dismiss chaos in quantum 
mechanics or  even point out that quantum mechanics is flawed or of limited validity 
for not encompassing chaos [l], are still lacking a solid basis. Take for example the 
much repeated statement that ‘because the energy spectrum of bounded systems is 
discrete, wavefunctions and density matrices are almost-periodic and their predictable 
repetitive behaviour precludes chaos’. Going back to the works of Bocchieri-Loinger 
[2], Percival [3] and Krylov [4], which are in general referred to whenever there is a 
supporting reference for the above statement, one finds that what is correctly claimed 
and proved by these authors is recurrence of the wavefunction or of the density matrix, 
in the sense that given any E > 0 and $ ( f )  o r  p ( f )  there are infinitely many T such that 

I l$( f+7)-  $(t)/l < E  vt 
I I P ( t + T ) - P ( r ) l l  < E V f .  

Recurrence is, however, also known to exist for bounded classical systems, chaotic or 
non-chaotic. 

Chaos in classical mechanics becomes a precise notion if one identifies it with the 
existence of at least one positive Lyapunov exponent. It is related to the physical 
notion of sensitive dependence on initial conditions. The positive Lyapunov exponent 
measures the local rate of separation of orbits which, at time zero, differ by a small 
vector along the unstable manifold. The positive Lyapunov exponent does not tell us 
that two orbits with initial conditions differing by a small vector along the unstable 
manifold will not eventually come close to each other at some later time. In fact they 
will, with probability one, for a bounded system. Therefore the Lyapunov exponent 
(and sensitive dependence) are not statements about a global property like recurrence. 
What the Lyapunov exponent is, in fact, is the average of a local property, i.e. the 
average local separation of orbits in the support of some measure. 

t On leave from Centro de Fisica de  MatCria Condensada. AV. Gama Pinta 2, 1699 Lisboa Codex, Ponugal. 
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Of course the almost-periodicity of the wavefunctions (and density matrices) of 
bounded quantum systems is very suggestive of regular motion. Remember however 
that there is nothing mysterious about it. It is simply a consequence of the linearity 
of the Schrodinger equation. The nonlinearity in the classical evolution is, in the 
quantum Schrodinger picture, traded off for the spectral problem of the Hamiltonian 
operator in the infinite-dimensional Hilbert space. Already if one uses the Heisenberg 
picture, the nonlinearity becomes manifest in the time evolution of the operators. 

It is therefore clear that, to decide whether and how chaoticity (in the sense of 
sensitive dependence) is modified or destroyed when one passes from classical to 
quantum mechanics, it is not enough to invoke almost-periodicity of the wavefunctions. 
Instead one should see whether (and when) quantum mechanical systems are sensitively 
dependent on initial conditions, as an averaged local property of separation of the 
dynamics, starting from two close initial wavefunctions $(to, x)  and $ ( I , ,  x) + 
W ( r 0 , x ) .  

By the Ehrenfest theorem one knows that sufficiently localized wavepackets have 
to follow the classical trajectories, at least during some time. Therefore for a hyperbolic 
system one may find wavepackets representing locally separating orbits. However if, 
at time f,, one has 

Il$+W - $ 1 1  10 = 8 

then the unitarity of the evolution operator implies that this distance remains the same 
for all times. The norm distance of the evolving wavefunctions remains the same at 
all times no matter which deformation direction one takes. Still the wavepackets must, 
at least during some time, be separating like the classical orbits. This only shows that 
statements based purely on the behaviour of the wavefunction risk being trivial and 
reflecting merely the linear nature of the Schrodinger equation. Non-trivial statements 
have necessarily to involve expectation values of operators and to make full use of 
their spectral properties. 

Another notion that is somewhat misleading is the description of quantum 
mechanics as a formally integrable Hamiltonian system on infinite-dimensional phase 
space. This corresponds essentially to expand the wavefunction in a basis of energy 
eigenstates 

* (?)=E a.(t)u. 
n 

and, using the fact that ~ a n ( t ) ~ = ~ a n ( 0 ) ~ ,  consider the set la.(O)l as an infinite set of 
constants of motion. However, by the same reasoning, one might, in classical mechanics, 
define a set of initial conditions ( q ( O ) ,  p ( 0 ) )  as being the constants of motion that label 
the orbits and declare that all classical systems are integrable. 

Integrability (in the Liouville sense) means however the existence of a maximal 
set of analytic constants of motion in involution. The corresponding notion for quantum 
systems would be the existence of a complete commuting set of operators. Such a set 
cannot in general be constructed and, even for classically integrable systems, sometimes 
the constants of motion do  not survive quantization. 

In what concerns the question of how to characterize the complexity of quantum 
behaviour, I have taken in this paper a somewhat conservative point of view. This 
means that it is implicitly assumed that the same notions that characterize chaos and 
complexity in classical mechanics might, if properly defined, do the same job in 
quantum mechanics. It is however quite possible that sensitive dependence and entropy 
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are not so useful in quantum mechanics after all, and that notions like the statistical 
properties of energy level separation and spectral properties are the only appropriate 
tools. With the mathematical results available at present it is also true that, in the 
Hilbert space setting of quantum mechanics, one is probably better equipped to discuss 
robustness of eigenvalue problems than the analogue of Lyapunov stability. 

2. %?d!k? 4epeEdeEce 

Ruelle [ 5 ]  has studied characteristic exponents and invariant manifolds in Hilbert 
space. His results apply in particular to partial differential equations with bounded 
evolution operators. For quantum mechanics however, the somewhat trivial nature of 
the unitary evolution when only the states are taken into account, forces us to consider 

Let $ ( t )  be a pure state in the Hilbert space X and .d a symmetric operator 
{(d$, $) = (4, d$)}. The tangent space to 26' at $ ( f )  being 2 itself, one considers 
norm-preserving infinitesimal deformations & ( O )  = $ ( O )  + S $ ( O )  

ins!ead !he evo!ution of ma!r;x e!emen!s of unhounded operators [ 6 ] :  

a($, $) = 0 3 (a*, $1 = 0 
i.e. the deformations are S $ ( O ) = S .  $ ( O )  with $ ( O )  in the orthogonal complement of 
$(O)  in Z(hence  also ( b ( t ) ,  $ ( t ) )  = O ) .  The expectation values of the operator 1 are 
used to measure the separation of the orbits with nearby initial conditions. Let 

A ( t )  = ( $ d t ) ,  .WdO) - ($(O, .dIL(t))=26. Re(b( t ) ,  d$(t)) .  . 

The time derivative of InllA( f ) 1 1  measures the local rate of separation of the orbits and 
the average value of this separation is obtained from a time average along the orbit. 
U^..^^ ... I-^ ~- *Le F-11 ̂ ..I :"" I:...:* 
r I C I I C C ,  W L l C l l C Y C l  L l l C  ."""WlUE. LIIII.L C A L D L I  

(with $ ( t )  = e - ' H ' $ ( 0 ) l $ ( r ) ) ,  it defines a quantum characteristic exponent at $ along 
the $-direction. A positive A d , +  would require exponential growth of IRe($(f), d$(f))l.  
Anticinntino eventiin1 rates nf . . ~  ernwth different from exponential in quantum mechanics 
we define: 

Definition. There is d-sensitive dependence ai the state $ if there is at least a $A$ such 
that for any T and M > 0 there is a f > T implying IlA(t)/A(O)ll> M. 

The above definition allows for oscillations of the ratio; it only requires that 
{ ~ ~ A ( f ) / A ( O ) ~ ~ ;  f > T} be unbounded. Also, for the moment, I will not be concerned 
with measure considerations in Hilbert space and consider only the behaviour on the 
orbit $(t).  

Theorem. If d is defined everywhere in X, d-sensitive dependence cannot take place. 

Roo$ By the Hellinger-Toeplitz theorem a symmetric, everywhere-defined operator 
is necessarily bounded. If d is bounded, 3 c  such that 

IlAlLll <cll$ll W*E X 

I(b(t), 44f)) l  < M .  U 
and by Schwartz's inequality 3 M  such that 
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Henceforth I will assume that SP is unbounded with dense domain a(&) in 2, 
Sensitive dependence is a notion distinct from unboundedness of expectation values. 

Let $ ( t )  and @ ( I )  be states in the continuum spectrum component of a Hamiltonian 
H. Let ( ~ " 1  be a basis in the continuum spectral subspace and SP an operator such that 

dxn) =f(n)&,,, with f ' (n) > 0 and f( n) unbounded. 

From $(()=In a,(f)x. and $(t)=x, bn(t)xn, using the RAGE-theorem [7], it follows 
that V E  > 0 and N 3 T such that 

r L j  1 la,(T)12dfS&. 
T o ~ S N  

Then it is easy to show [SI that V& > 0 and M > O  there is Tr,,, such that for T >  Tr,M 

implying that the matrix elements ( @ ( I ) ,  SP@(t ) )  and ( $ ( I ) ,  SP$(f)) are unbounded in 
time. 

For the matrix elements involved in sensitive dependence 

( @ ( t ) ,  . W ( t ) )  =1 aX(t)b,(t)f(n) (2.2) 

because @L+, In a : ( f ) b . ( t )  = 0 and any bound on the sum of a finite number of terms 
implies the same bound on the remaining terms. Whether the matrix element (2.2) is 
bounded or unbounded depends on the detailed nature of the time evolution. The 
argument leading to unboundedness of expectation values does not imply unbounded- 
ness of the matrix elements of sensitive dependence. This suggests that these two 
phenomena might not always occur simultaneously. 

The point spectrum of bounded quantum systems implies recurrence of the wave- 
function. For sensitive dependence one has the result: 

Theorem. If the energy has a point spectrum without accumulation points nor infinite 
degeneracies, there is no sensitive dependence for any operator SP when restricted to 
a bounded energy subspace. 

Proof: By bounded energy subspace of 2 we mean a subspace where vectors have 
components of energy less than K only. Let 

and @( t )  = z U"@,, e-'E," #( t )  = 1 b,& e-'',? 

with E, < K. Then in 

Re(@(t) ,  SPi)(t))=Re oX.b,($,., 4 6 " )  e-''Ea*-E,zl' (2.3) 

if there are no accumulation points nor infinite degeneracies of the spectrum in the 
range [0, K ) ,  the sum on the RHS has only finitely many terms and, being a 

U 

"."' 

trigonometrical polynomial, is bounded for all 1. 
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That a point spectrum does not, by itself, exclude sensitive dependence is seen 
from an example. Let $(0)=Zn a,X., $(O)=Z, b,X. 

( X k .  d X . 1  = ~ - l ~ ~ n ~ ~ , " + , + ~ - l ~ " - ' ~ n - l ~ s ~ , " - ,  
and 

a ,=O(nodd)  
245 

a ,  =- ( n  even) 
7rn 

b . = - (  nodd)  b. = 0 ( n  even) 
7rn 

Then 

If, for example 

1 1 
E -~ ( n  even) E,=-(nodd)  

" - 2 ( n + l )  2 n  

t h e  term in curly hrackets on the R H S  nf (2.4) hecomes -exp{i(€, - € , - _ : ) t ! +  n / ( n +  I )  
( n  even). For f = T N ! !  all ( E ,  - E n - , )  up to order N - 1 are odd multiples of 7r. Hence 
the sum in (2.4) reaches arbitrarily high values for sufficiently large f. Notice that the 
sum of the remaining terms cannot cancel this growth because for large n it has a 
positive real part. Similar examples may easily be constructed involving, instead of an 
accumulation point, a sequence of arbitrarily large energy components. 

Bellissard [SI had already pointed out that a pure point spectrum is not sufficient 
for boundedness in time of expectation values if some of the eigenstates of H are not 
in the domain of the operator d. In this case however, one even notices that all 
eigenstates of H as well as $(O) and +(O)  are in the domain of d. Subtler domain 
questions must however be involved because under time evolution the norm IId$( f)i l  
is also reaching successively higher values, approaching in some sense the boundary 
of the domain of d. Notice also that (+( f ) ,  d+(f)) = ( $ ( t ) ,  d$(f)) = 0 Vf, showing 
that in this case sensitive dependence and unbounded growth of expectation values 
are different phenomena. 

Notice the difference in the behaviour of Re($(f), d$(t))  and, for example, the 
quantity 1 1 $ ( f ) - $ ( O ) l i  that is used in the proof [ 2 ]  of recurrence of the wavefunction 

I/ $( 1) - $(O) /I = 2 1 I b. l'( 1 --COS Emf). 
n 

Because of the normalizability of the wavefunction, this norm difference is approxi- 
mated to arbitrary accuracy by a trigonometric polynomial, which is bounded and 
almost-periodic. I n  Re( $(O), d $ ( O ) ) ,  however, the series need not be absolutely conver- 
gent. In fact, absolute convergence of the series would be a sufficient condition for 
boundedness. 

Theorem. If S=Z;,.=, ~ ~ a ~ ~ b , , ( $ n ~ , d $ n ) ~ ~  is finite then ( + ( I ) ,  d$(t))  is bounded in 
time. 

S f i n i t e j t l a  3 N  suchthatZ:,.,N Ila3bn(dJn,, d+,,)II < a.ThenZ.,",.=, a?.b,,(&, d&) 
0 is a (bounded) trigonometric polynomial that approximates ( + ( I ) ,  d$(f)). 
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The point nature of the spectrum, by itself, does not preclude the occurrence of 
quantum sensitive dependence. Notice however that the non-trivial cases necessarily 
involve states with arbitrarily many energy components near an accumulation point 
or components of arbitrarily large energy. Numerical simulation of quantum systems 
tend to take into ac.:ount only finitely many energy components, and non-trivial 
quantum behaviour risks to be excluded not because of the quantum dynamics but 
because of the choice of initial conditions 191. The critical nature of the initial conditions 
(i.e. the state $(e) defining the nrbit where sensitive depexdence is. s!udied) is 8ppare-t 
in the example. Indeed, if $(O) is an arbitrary state with a finite number of energy 
components, then no matter how these components are chosen, Re($(t), d$(t))  is 
always a trigonometric polynomial and there is no d-sensitive dependence. The 
sequence $ J t ) = Z : = l  bn& with b , E l / n  is a sequence of vectors without d- 
sensitive dependence, which approaches an d-sensitive limit point. 

turbed time evolution operator has a point spectrum. However, in the literature related 
to the numerical simulation of quantum systems, it is pointed out as a further symptom 
of the stability of quantum mechanics that, even in the case of continuum spectrum, 
the reversibility of time evolution is not affected by the computer round-off errors. 
This is in contrast to the situation in the numerical simulation of classical chaotic 
systems. This difference in behaviour might have a simple interpretation in terms of 
the nature of the quantum sensitive dependence. In  the classical orbits the round-off 
errors essentially explore the whole of the (finite-dimensional) tangent space to the 
orbit. In quantum mechanics however the tangent space is infinite-dimensional and 
the computer errors, referring to errors in a finite number of components, only explore 
a finite dimensional subspace of the infinite dimensional tangent space. Furthermore 
it seems to be usually the case that the unstable directions are associated to vectors 
with an infinite number of components in the unperturbed basis. Then, any error on 
finitely many components is simply a deformation along a direction that is not sensitively 
dependent and reversibility will not be affected. 

I will end up with a simple example of a quantum rotator kicked by a sequence 
of rank-one potentials. Rank-one kicks, as compared with multiplicative potential 
kicks, are easier to handle analytically, allowing in particular stronger non-perturbative 
results [ 111. 

The pher?omer?on of n,uar?t.m !oca!ization i s  re!.ted !O sit..tions where !he per- 

Consider the following time-dependent Hamiltonian 

defined on the circle X E  [0, 1). where 14") is a sequence of Hilbert space vectors. 
If all @,'s were the same this would be a time-periodic Hamiltonian. Hamiltonians 

of the form (2.5) seem to be good testing grounds to study quantum sensitive behaviour 
phenomena. Here I will only illustrate its usefulness in an extremely simple case. I 
will be particularly concerned with the sequence 

where y. is a normalization factor and Ik)=e'2"kX an eigenvector of the unperturbed 
Hamiltonian 
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The operator of time evolution from 'just after the ( n  - I)th kick' to 'just after the nth 
kick is 

- 1. CL = 

Consider the (resonant) case a = 1. The free evolution operator 

has an infinitely degenerate point spectrum, all vectors in the Hilbert space belonging 
to the eigenvalue one. The eigenvalue problem for each of the LJn(A) operators is 
extremely simple. The spectrum remains pointlike, with the Hilbert space splitting into 
two components. The vector 14") belongs to  the eigenvalue e-'A, whereas all vectors 
in the orthogonal complement to 16") have eigenvalue one. This simple structure allows 
a trivial computation of the time evolution. Let for example 

m ,  

$ ( O ) = c  1 f 1 2 k + l )  
* = I  k 

Because $(O) is orthogonal to all I$")'s $( t )=  $(O) for t e Z .  Let d= Ho. $(O) is not 
in the domain of d but in a rigged Hilbert space sense the matrix elements ($(t)d$( 0 )  
are well defined, finite and constant for all r E Z. 

For the matrix elements ($( i )d$( t ) )  with + ( t ) l $ ( t ) ,  if +(O) is chosen also in  the 
subspace orthogonal to all l$,,)'s, the matrix element is fixed for all times. If however 
$(O) has a non-zero overlap with one I$,,), the matrix element (+(i)d$(t)) grows 
unboundedly in time. This example may be readily extended to the study of other 
more complex (non-resonant) situations. 

3. Entropy 

in ciassicai dynamical sysrems the Kolmogorov-Sinai j i i ,  i3 j  entropy is an important 
indicator of orbit complexity. Through Pesin's theory it is closely related to the 
distribution of positive Lyapunov exponents, at least when the invariant measure is 
absolutely continuous with respect to  the Lebesgue measure [14]. 

Several attempts have been made to carry this notion to quantum systems [15-181. 
In the definition of the Kolmogorov-Sinai entropy a finite partition of a measure space 
plays an essential role. This is generalized to  the quantum case by considering a finite 
dimensional Abelian subalgebra of a von Neumann algebra or an Abelian sublattice 
in the lattice of projections, i.e. an Abelian model of the system is constructed, the 
entropy being then defined as a supremum over all the Abelian models. For the purpose 
of comparison with a later proposal, I will first sketch a Hilbert space version of 
Srinivas [15, 181 construction, which is directly inspired by the Kolmogorov definition. 
TI.-.. ....+:-- r h - t  +he ml. . l t inn na l~nt i tv  1s nn+ nnrnl\, 3" inrlirltnr of the rlun.mir.1 
. , ,C, ,  ,,Y,,CC ,,.a, L.,b .C"Y,L.l.6 'lYY..L.., ..". y.. .-., I.. ... ".-I.-. 1.. 1 -.,.." .... _... 
diversity in the neighbourhood of an orbit, but it involves i n  an essential way the 
reduction features of the quantum measurement process. Using a cylinder measure 
centred on a pure state, a new quantity is defined in the spirit of the topological 
Brin-Katok [I91 definition. 
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In the Kolmogorov construction one considers a partition 9 and its refinement 
V m  9, the elements of V. 9 being the non-empty intersections 

( a n n  T - ' a , n . .  .n T-"a,] a; E 9. 

If p is the invariant measure, the entropy of the partition is 

1 
h ( T , P ) = - l i m -  1 @ ( b ) l o g p ( b ) .  (3.1) 

"-CL- n hsV,, 'P 

The entropy of the dynamics T is the supremum of h ( T ,  9) over all partitions. If at 
time zero a particular point in phase space belongs to the element b = a,  n T- 'a ,  n. . . n 
T-"a. ofthe partition V, 9, it means that a positive answer is assigned to the proposition 
' the orbit at time k is in the element ax of 9'. 

In Hilbert space quantum mechanics the set of propositions is the orthocomple- 
mented lattice 2 of projection operators. The interpretatio'n of the elements of V., 9 
as propositions suggests that partitions in the space of quantum events be identified 
with Boolean sublattices of 2. The physical meaning of the partition is provided by 
the spectral theorem, which associates with each self-adjoint operator SP (observable) 
a spectral measure, i.e. a function from the Bore1 sets Ai on R to the lattice of projections 
A; + E(A,) = E( E 3. € ( A i )  represents the measurement that selects systems with values 
of the observable SP in the range A,.  

Because the sublattice so defined is Abelian, the set {Ej) is a partition of unity and 
E (  U A j )  = .Xj E j  for disjoint Ai's, each state yields a measure on the partition, E, + 
p(€. ) ,  which by Gleason's theorem is defined by a density operator p,, 

@(Ei) =Tr(p,.EO. 

If U, is the unitary operator of time evolution, the projections evolve as 

E\"= U,E,U;'. 

The elements of the refinement are 

&{j,v.,jot corresponds to the experiment E(A,,) at time zero followed by €"'(A,,) at time 
one, etc. However E { , , ~ . . ~ " ,  is a projection if and only if the projections E'"'(A;,,) commute. 

The measure in the refinement is 

~ ( q ; , ~ , . . ~ ~ t )  = T ~ ( ~ ~ & ~ . , ~ . . ; , , I & I , , ~ . , ~ " , )  (3.3) 

and the following limit, whenever it exists, would be a quantum generalization of 
Kolmogorov's partition entropy: 

For the entropy h ( p )  one would take the supremum over the partitions induced by 
all self-adjoint operators in X. 

The limit in (3.4) has been proven to exist [18] if one assumes that the state p is 
invariant WRT time evolution and the partition {E;); pu = U,pwU;' and @ ( A )  = 
@ ( X i  EjAEj ) .  This last condition may however be too restrictive. 

At this point one notices however that in general the partition refinement as defined 
in (3.2) plays a role very different from V,, 9 in the classical mechanics case. In the 
classical case the assignment of the trajectory at a certain time, to an element of the 
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phase-space partition, does not change the orbit. Therefore the rate of refinement of 
the partition does not depend on the measurement process, but only on the diversity 
of orbit behaviour. In contrast, the quantum mechanical projections in (3.2) do change 
the dynamical state and in the end the entropy will depend as much on the non- 
commutativity of d with the time evolution U, as on the state that defines the 
measure p. 

To define a quantity with a meaning closer to the classical one, we now use a 
construction in the spirit of the Brin-Katok [19! definition. Let t+h be a pure state and 
suppose we want to characterize the diversity of dynamical behaviour in a neighbour- 
hood of +. Let d be a self-adjoint operator that as in section 2 one uses to characterize 
orhit separation. For the measure one chooses a Gaussian cylindrical measure centred 
on $, with covariance defined by a strictly positive operator 3 commuting with time 
evolution. 

Let e,(f) = U,e,(O) be an orthonormal basis in an n-dimensional subspace contained 
in the orthogonal complement of $(I) in X. The Gaussian measure is characterized 
by the following finite-dimensional (cylinder) densities. 

with 6, = + + xiei and (A), = ( e , ,  Be,). The p so defined is finitely additive, but u-additive 
if and only if 3 is trace-class. 

As in section 2 d-separation between nearby normalized states + and $+ 6d is 
12 Re(&$, dt+h)l with &bLt+h. For each finite-dimensional subspace V, in the orthogonal 
complement of + in %, we define the ( E ,  7) n-ball around # as the set 

By'(T,  $)=IS+: 12 Re(Sd(f), s P + ( f ) ) l s ~ ,  O s f  S T, S + E  V, c Z, S+pl@} (3 .6)  

with &$(I) = U,&$ and $(I) = U,+. 
The measure associated t o  the ( E ,  T )  n-ball is 

p(B(d'( T, +)) = (2?r)-"" I ) (3 .7)  
12Re(60(tJ..d*(ll)lh= 

"<,ST 

Provided the limits exist, the quantities 

1 
~ - m  T h'"'( +, E )  = - lim -log p( B y ' (  

h'"'(+)=lim h'"J(@,  E )  

@)) 

r - 0  

are cylinder set quantum generalizations of the Brin-Katok entropy. They characterize 
the complexity of the orbit structures io a neighbourhood of #, with the time-zero 
deformations restricted to  a finite-dimensional subspace. Considering a sequence 
V ,  c V , c  V, . . . of successively larger finite-dimensional subspaces, the construction 
of a global notion of entropy will depend on the existence of the corresponding 
inductive limit. No general statement can be made about the existence of these limits 
without specifying the nature of sf and U,. 

The quantities h'"'(+, e )  and h i" ' (+)  are sensitive to the diversity of dynamical 
evolution in the neighbourhood of 9, and not to the state reduction nature of the 
measurement process, as h ( p .  d) in (3.4). That these quantities are indeed closer to 
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the corresponding classical notions is seen by the following simple estimate. The 
integration limits in (3.7) are defined by 

For a strictly positive covariance operator 3, the Gaussian measure becomes flat in 
the E + 0 limit and 

Then 

The only terms contributing to the limit are those where IRe(ej(l), d$(i))I is exponen- 
tially unbounded in 1. Comparing with (2.1) we conclude that h'"'($,  E )  becomes the 
sum of the positive exponents associated to directions contained in V,. This would be 
a quantum analogue of the Pesin formula. Notice however that it refers only to 
finite-dimensional restrictions of the entropy and the exponents. 

References 

[ I ]  Ford J 1988 Direerions in Chaos "01 2, ed Hao Bai-Lin (Singapore: World Scientific) p 128 
[Z ]  Bocchieri P and Loinger A 1957 Phys  Rev. 107 337 
[3 l  Percival I C 1961 J. Marh. Phys. 2 235 
141 Krylov N S 1979 Works on the Foundations ofSrorirricol Physic3 (Princeton, NI: Princeton University 

[5] Ruelle D 1982 Ann. Math. 115 243 
[6] A similar situation occurs in classical mechanics where, even for a system with positive Lyapunav 

exponents in phase space, initially close probability densities remain close in  norm far all times 
because of the unitarity of the Liouville aperator 

[7] Reed M and Simon B 1978 Methods of Modern Morhemolicoi Physic3 YOI 111 (New York: Academic) 
[ S j  Beiiissard j i985 Trends ond Deuriopmsnrs in the Eighrier ed S Aibeverio and P Bianchard (Singapore: 

[9] A remark of a related nature was made by Karner [IO] for the Dirichlet quantum problem associated 

Press) 

World Scientific) 

with the Fermi accelerator model 
[ I O ]  Karner G 1989 Len. Marh. Phys. 17 329 
[ I l l  Combescure M 1990 J.  Stor. Phyr. 59 679 
[ I21 Kolmagorov A N 1958 Doki. Akod. Nouk SSSR 119 861 
[ I31 Sinai J 1959 Dokl. Aknd. Nouk. SSSR 124 768 
[ I41 Mahe R 1987 Ergodic Theory and Differenriable Dynamics (Berlin: Springer) 
[ I51 Srinivas M D 1978 I Moth. Phyr 19 1952 
1161 Cannes A, Narnhofer H and Thirring W 1987 Commun. Marh. Phgr 112 691 
[ I71 Araki H 1987 Proe. Erh In:. Congr. on Morhemoricol Phyrici ed M Mebkhout and R Senior (Singapore: 

[ I S ]  Lindblad G 1988 Quonrum Probobi1ir.v and Applieationi 111 ed L Accardi and W yon Waldenfeldr 

[I91 Brin M and Katok A 1983 GeomerricalDynamicr (Lecture Nores in Marhemaricr 1007) (Berlin: Springer) 

World Scientific) p 354 

(Leerure Notes in Marhemarim 1303) (Berlin: Springer) p 183 

P 30 


